PZT Actuated Four-Bar Mechanism with Two Flexible Links for Micromechanical Flying Insect Thorax
نویسنده
چکیده
In this paper, a four-bar mechanism with two flexible links is proposed to be used in a micromechanical flying insect robot wing thorax design for stroke amplification. PZT5H and PZN-PT based unimorph actuators are utilized at the input link of the four-bar. The kinematics and dynamics of the proposed wing strcuture with two parallel four-bar mechanisms are analyzed, and DC forces generated at the wing are computed for checking the feasibility of the design. Using laser micromachining and folding techniques, prototype four-bars are constructed, and it is shown that the single four-bar structure can have 90−100 stroke motion at 29 Hz with a rigid polyester wing on it.
منابع مشابه
Piezoelectrically Actuated Four-Bar Mechanism with Two Flexible Links for Micromechanical Flying Insect Thorax
In this paper, a piezoelectrically actuated four-bar mechanism with two flexible links is proposed to be used in a micromechanical flying insect robot wing thorax for stroke amplification. PZT-5H and PZN-PT based unimorph actuators are utilized at the input link of the four-bar for a compact and light weight thorax transmission mechanism. The kinematics and dynamics of the proposed wing structu...
متن کاملTowards flapping Wing Control for a Micromechanical Flying Insect
A 2 DOF resonant thorax structure has been designed and fabricated for the MFI project. Miniature piezoelectric PZN-PT unimorph actuators were fabricated and used to drive a four-bar transmission mechanism. The current thorax design utilizes two actuated four-bars and a spherical joint to drive a rigid wing. Rotationally compliant flexure joints have been tested with lifetimes over 10 cycles. W...
متن کاملMicrorobotics using composite materials: the micromechanical flying insect thorax
The use of high performance composite materials provides a substantial performance improvement for microrobotics. Such materials have great benefits over common MEMs materials such as better fracture toughness and fatigue properties than semiconductors, and higher stiffness to weight ratios than most metals. Composite structures yield remarkable improvements in microrobotic links and joints, as...
متن کاملChallenges for 100 Milligram Flapping Flight
Creating insect-scale flapping flight at the 0.1 gram size has presented significant engineering challenges. A particular focus has been on creating miniature machines which generate similar wing stroke kinematics as flies or bees. Key challenges have been thorax mechanics, thorax dynamics, and obtaining high powerto-weight ratio actuators. Careful attention to mechanical design of the thorax a...
متن کاملDynamically Tuned Design of the MFI Thorax
This paper presents an analysis of the major mechanical component (the thorax) of the micromechanical flying insect (MFI), a centimeter sized aerial vehicle currently in development at UC Berkeley. We present a description of the kinematics of the mechanism which converts piezoelectric actuation into complex 3D wing motion. A complete non-linear modeling of the system based on the Lagrangian en...
متن کامل